

RF Exposure Policies Updates on Draft KDB Publication 447498

Laboratory Division

Office of Engineering and Technology

Alfonso Tarditi and Tim Harrington

Note: The views expressed in this presentation are those of the authors and may not necessarily represent the views of the Federal Communications Commission.

Part II

Topics:

- > KDB 447498 Revision and Transition
- > Evaluation of Unintentional Radiation Sources for RF Exposure
- Far-Field Data for RF Exposure Power Estimates
- ➤ Addressing Comments on KDB 447498 Draft
- ➤ Equipment Authorization Policies and §1.1307
- ➤ Coming Soon: SPLSR Criterion Updates
- ➤ Modules: Simultaneous Transmissions in Hosts
- **Conclusions**

KDB 447498 Revision and Transition (I)

- Until further notice, either 447498 D04, or the previous KDB Pub. 447498 D01 v06 may continue to be used:
 - No mix of old and new procedures within application filings
 - A transition period date will be announced (with ample advance notice)
- For devices using 447498 v06 and not subject to PAG:
 - Form-731s and associated grants must be submitted to FCC by a TCB on or before the end of the transition period
- For devices using 447498 v06 and subject to PAG:
 - TCB must submit PAG KDB inquiry and fully-populated Form-731 application on or before the end of the transition period

KDB 447498 Revision and Transition (II)

Comment period for draft publication ended on Oct 21

Expected Next-steps Timeline

- End of Nov 2022: review of all comments filed
- End of Dec 2022: publication updates
- End of Jan 2023: review and release of new version of 447498

Unintentional Radiators Sources (I)

- New guidance in KDB 447498 will discuss provisions for evaluation of RF exposure contribution from Unintentional Radiator Sources (URS)
- Simplifications being considered for URS power estimates based on:
 - Electric field strength measurements in the far-field (including data from URS already evaluated for Part 15 B compliance)
 - Radiated emissions from a small dipole
- The proposed approach leverages well-established exemption criteria for intentional radiators ("1-mW" exemption included)
- Examples for filing purposes to be added in the KDB 447498, including reference to use of EMC data

Unintentional Radiators Sources (II)

Power Estimates Based on Electric Field Strength Measurements

Radiated power from an isotropic radiator

$$P_{rad} = \frac{2 E^2 \pi r^2}{n}$$

 $P_{rad} = \frac{2 E^2 \pi r^2}{\eta}$ where P_{rad} is the power averaged over a wave period, E is the maximum amplitude of the sinusoidal wave, r is the distance of the measurement point in the far-field from to the center of symmetry of the URS radiating structure (all S.I. units), and $\eta=120\pi$

 \bigcirc P_{rad} may also be derived via approximate, albeit conservative estimates based on far-field data (e.g., collected for Part 15B compliance)

Unintentional Radiators Sources (III)

Power Estimate Based on Equivalent Dipole Model

• URS emitted power approximated by considering an equivalent small dipole model

 $P_{rad} = \frac{\eta \pi}{3c^2} (I_0 lf)^2$

where I_0 is the URS RF current, l is the equivalent dipole length, and f is the frequency, $\eta=120\pi$, and c is the speed of the light (S.I. units)

Unintentional Radiators Sources (IV)

Example - 1 mW Exemption for Fast Microprocessor CPU

Assuming that the estimated URS parameters for the small dipole formulas are $I_0 = 0.1$ A, l = 0.01 m, and frequency $f = 3.6 \cdot 10^9$ Hz, applying the small dipole formula in the previous section yields:

$$P_{rad} = \frac{\eta \pi}{3 c^2} (I_0 lf)^2 = 0.0568$$

• Thus, the radiated power is about 57 mW, and the URS does not qualify for the 1 mW exemption.

Far-Field Data for RFX Power Estimates (I)

- The electric field needs to be measured in the far-field without near-field absorption by dissipative materials that would otherwise affect the outgoing power flow at a larger distance
- The direction of the maximum electric field can be estimated based on the geometrical features of the radiating structure and corroborated by a few spot checks taken along the principal symmetry axes of the device.

Note: RFX = RF eXposure

Far-Field Data for RFX Power Estimates (II)

- In these conditions, the near-field is characterized by only reactive components not contributing to the average power flow,
- The total radiated power computed via integration of the Poynting vector is independent on the integration surface enclosing an antenna.
- Thus, the integration can be performed in the far field of the antenna, resulting in a simpler calculation.

Addressing Comments on KDB 447498 Draft (I)

- Unless otherwise stated, all formulas are in S.I. units. Over-extending the use of "dB" units complicates, not simplifies the calculations
- "Errata" annex document updates Table B.1 reproducing correctly the formula from the text and adds definitions for the smoothing functions
- TER for SPLSR calculation: work in progress, addressed later in this presentation
- Typically, RF transmitter conducted power is considered for assessing the applicability of equipment authorization test exemptions (§1.1307) exemptions are more general):
- Total radiated power estimates from far-field data may be also be considered (see previous slides) e.g., from standard-compliant measurements

Addressing Comments on KDB 447498 Draft (II)

- More extensive Unintentional Radiators test exemptions based on Part 15B EMC test data will be described in detailed
- Devices meeting 15B limits are typically characterized by very low or negligible emissions: thus, aggregate emissions meeting 15B limits may be sufficient, and not require identification of each separate URS
- Provisions are being worked out for capturing special cases (e.g., emissions up to the 15B limit and over a large bandwidth)

Addressing Comments on KDB 447498 Draft (III)

- Efforts in place reflect industry-friendly, yet conservative approach, with only approximate analyses required:
 - SAR evaluations may include URS transmitters at different frequencies, with some variations allowed for SAR system calibration vs. frequency
 - Equivalent dipole parameters for URS test exemptions may be based on a reasonable, approximate guess-estimates
 - Part 15B-based estimates may require additional frequency components in addition to the peak emission frequency

Equipment Authorization Policy and §1.1307 (I)

- KDB 447498-draft, Sec. 1.3, provides direct connection between RF Exposure policies for certified equipment and the §1.1307 rule
- Accordingly, an equipment certification is considered
 - valid as "evaluation of the human exposure to RF radiation", thus meeting the requirement of 47 CFR 1.1307(b)(1)(i)(B) for an evaluation
 - sufficient to state compliance with § 1.1310, thus meeting requirement of 47 CFR 1.1307(b)(1)(i)(B) for a statement of compliance.

Equipment Authorization Policy and §1.1307 (II)

Exemption vs. Exclusion: a terminology clarification

- Past guidance used, in part, the "test exclusion" terminology
- 47 CFR 1.1307(b)(2) discusses exemptions (from evaluation to demonstrate compliance)
- New KDB 447498-draft harmonized with rule and proper semantics:
 - Exclusion conveys the idea of prohibition, prevention, blocking
 - Exemption conveys the idea of "not required", "not necessary", albeit it may be allowed
- The exemptions in KDB 447498 refer to specific testing is not being required, thus provide more streamlined compliance demonstration
- However, if preferred, full testing is allowed and accepted (thus, there is no test exclusion)

Equipment Authorization Policy and §1.1307 (III)

Frequency range a	FCC Rules	OET Equipment Authorization Policies
<i>f</i> ≤ 100 kHz	N/A (under consideration) ^c	All devices assessed case-by-case, with field strength limits of $E = 83$ V/m and $H = 90$ A/m, in all body exposure relevant positions
$100 \text{ kHz} < f \le 300 \text{ kHz}^{\text{ b}}$	SAR limits in § 1.1310 (b), (c)	MPE limits at 300 kHz in Table 1 to § 1.1310(e)(1): $E = 614 \text{ V/m}$ and $H = 1.63 \text{ A/m}$
300 kHz < <i>f</i> ≤ 4 MHz ^b	§ 2.1091 Mobile Devices: MPE limits in Table 1 to § 1.1310(e)(1) § 2.1093 Portable Devices: SAR limits in § 1.1310 (b), (c)	MPE limits in Table 1 to § 1.1310(e)(1)
$4 \text{ MHz} < f \le 6 \text{ GHz}$	§ 2.1091 Mobile Devices: MPE limits in Table 1 to § 1.1310(e)(1)	
6 GHz < <i>f</i> ≤ 100 GHz	§ 2.1093 Portable Devices: SAR limits in § 1.1310 (b), (c) MPE limits in Table 1 to § 1.1310(e)(1) c	
$100 \text{ GHz} < f \le 3000 \text{ GHz}$	N/A (under consideration) ^c	

^a For all $f \le 6$ GHz, SAR limits in §§ 1.1310 (b), (c) can always be applied where available, in place of MPE limits

Synopsis of RF Exposure Limits in FCC Rules and OET Equipment Authorization Policies

^b Policies for $100 \text{ kHz} < f \le 4 \text{ MHz}$ reflect capabilities of available SAR measurement equipment. Numerical simulations may be also acceptable, under PAG

^cNPRM, ET Docket No. 19-226; FCC 19-126, 34 FCC Rcd 11743

Coming Soon: SPLSR Criterion Updates (I)

• As a reminder, the total exposure ratio TER is defined as:

$$TER = \sum_{k=1}^{N_S} \left(\frac{SAR_k}{SAR_{\lim}} \right) + \sum_{k=1}^{N_f} \left(\frac{MPE_{field, k}}{MPE_{field, \lim}} \right)^2 + \sum_{k=1}^{N_{PD}} \left(\frac{MPE_{PD, k}}{MPE_{PD, \lim}} \right)$$

with N_S , N_f , and N_{PD} referring to sources requiring SAR, field-MPE, or PD-MPE, respectively, and "lim" to the corresponding applicable compliance limit

● When SAR is applicable for all the simultaneous RF sources, if each source is compliant (*e.g.*, SAR<1.6 W/kg), but the sum of all SAR values is greater than the applicable limit (equivalent to TER>1), the SPLSR criterion may provide test compliance reduction

Coming Soon: SPLSR Criterion Updates (II)

Per KDB 447498, the SPLSR criterion allows to consider a device compliant if

$$SPLSR = (SAR_i + SAR_j)^{1.5}/R_{i,j} < 0.04$$

for every pair (i,j) of transmitter antennas separated by a distant $R_{i,j}$ expressed in mm, and with stand alone evaluated SAR_i and SAR_i .

- OET Lab working on an extension of guidance for evaluating simultaneous transmission when
 - SAR for all RF sources, i.e., f < 4 MHz or f > 6 GHz
 - Each source is compliant when transmitting by itself
 - -TER > 1
 - Additional conditions related an approximately co-planar placement of antennas are verified

Coming Soon: SPLSR Criterion Updates (III)

- In general, different transmitters may need to be evaluated either through SAR or MPE (either field-MPE, or Power Density-MPE)
- The SPLSR criterion is being investigated to generalize its applications to a wider frequency range
- For simplicity, a normalized "exposure ratio" ER, in a similar way to contributions of the TER, is defined as:

$$ER = \begin{cases} \frac{SAR}{SAR_{lim}}, & if SAR \ applies \\ \frac{MPE_f}{MPE_{field,lim}} \\ \frac{MPE_{pD}}{MPE_{pD,lim}}, & if \ PD - MPE \ applies \end{cases}$$

Coming Soon: SPLSR Criterion Updates (IV)

- With the "exposure ratio" ER definition, one may easily write an equivalent expression to the present SPLSR formula for the cases where ER=SAR
- When considering ER based on MPE terms above 6 GHz, the simple extension of the current SPLSR criterion may lead to conservative estimates, due to the smaller extension of the near field for increasing frequencies
- The proper extension to MPE for less than 4 MHz is being investigated
- A comprehensive formulation is in progress and planned for the final edition of KDB 447498

Modules: Simultaneous Transmissions in Hosts (I)

Present, Well-Established Policy (KDB 447498 v06)

- The host integrator needs to establish whether a *Module*, while inserted in the host, will be operating in *integrated stand-alone* or simultaneous transmission conditions
- Integrated stand-alone operation refers to the Module transmitting while integrated in the host, but without any other transmitter operating in the host
- If the *Module* is transmitting while any other transmitter in the host is allowed to operate, then the simultaneous transmission operation shall be evaluated

Modules: Simultaneous Transmissions in Hosts (II)

RF Exposure Requirements for Stand-alone Operating Modules

- New guidance for *Modules* integration is being considered for forthcoming KDB 447498 v07
- Goal: to allow the host integrator to assess the applicability of the Module for integrated stand-alone operations in a particular host with minimal RF exposure evaluations.
- This guidance, for cases corresponding to the large values of *integrated* stand-alone RF exposure evaluation indicators (SAR or MPE), includes some restrictions on the hosts in which the *Module* can be integrated.

Modules: Simultaneous Transmissions in Hosts (III)

RF Exposure Requirements for *Modules* **operating in Simultaneous Transmission Conditions**

- The host integrator is solely responsible for ensuring that compliance is met for the Module integrated in the host according to the grant conditions and instructions
- Proposed guidance in Draft KDB 447498-DR05 Sec. 4.3 includes provision based on SPLSR criterion for evaluation of *Module* integration for simultaneous operations in the host
- This provision may significantly streamline the host integration options, also in consideration of the SPLSR extension (in progress) to TER evaluations

Conclusions

- Work in progress on several front to simplify guidance for compliance RF exposure
- Efforts with no compromises on safety, but accounting for consumer and industry and needs
- R&D at FCC Office of Engineering and Technology to ensure impartial validation of data and estimates